Drawing a stereographic duoprism
Posted on February 11, 2020
by Stéphane Laurent
In this post, I’ll show how to draw a stereographic duoprism using R, Asymptote and POV-Ray.
With R
library(rgl)
A <- 8L # number of sides of the first polygon
B <- 4L # number of sides of the second polygon
# construction of the vertices
vertices <- array(NA_real_, dim = c(A,B,4L))
for(i in 1L:A){
v1 <- c(cos(i/A*2*pi), sin(i/A*2*pi))
for(j in 1L:B){
v2 <- c(cos(j/B*2*pi), sin(j/B*2*pi))
vertices[i,j,] <- c(v1,v2)
}
}
# construction of the edges
edges <- array(NA_integer_, dim = c(2L,2L,2L*A*B))
dominates <- function(c1, c2){
c2[1L]>c1[1L] || (c2[1L]==c1[1L] && c2[2L]>c1[2L])
}
counter <- 1L
for(i in seq_len(A)-1L){
for(j in seq_len(B)-1L){
c1 <- c(i,j)
candidate <- c(i, (j-1L)%%B)
if(dominates(c1, candidate)){
edges[,,counter] <- cbind(c1, candidate) + 1L
counter <- counter + 1L
}
candidate <- c(i, (j+1L)%%B)
if(dominates(c1, candidate)){
edges[,,counter] <- cbind(c1, candidate) + 1L
counter <- counter + 1L
}
candidate <- c((i-1L)%%A, j)
if(dominates(c1, candidate)){
edges[,,counter] <- cbind(c1, candidate) + 1L
counter <- counter + 1L
}
candidate <- c((i+1L)%%A, j)
if(dominates(c1, candidate)){
edges[,,counter] <- cbind(c1, candidate) + 1L
counter <- counter + 1L
}
}
}
# stereographic projection
stereog <- function(v){
v[1L:3L] / (sqrt(2) - v[4L])
}
# spherical segment
sphericalSegment <- function(P, Q, n){
out <- matrix(NA_real_, nrow = n+1L, ncol = 4L)
for(i in 0L:n){
pt <- P + (i/n)*(Q-P)
out[i+1L, ] <- sqrt(2/c(crossprod(pt))) * pt
}
out
}
# stereographic edge
stereoEdge <- function(verts, v1, v2){
P <- verts[v1[1L], v1[2L], ]
Q <- verts[v2[1L], v2[2L], ]
PQ <- sphericalSegment(P, Q, 100L)
pq <- t(apply(PQ, 1L, stereog))
dists <- sqrt(apply(pq, 1L, crossprod))
cylinder3d(pq, radius = dists/15, sides = 60)
}
# projected vertices
vs <- apply(vertices, c(1L,2L), stereog)
####~~~~ plot ~~~~####
open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9)
bg3d(rgb(54, 57, 64, maxColorValue = 255))
## plot the edges
for(k in 1L:(2L*A*B)){
v1 <- edges[, 1L, k]
v2 <- edges[, 2L, k]
edge <- stereoEdge(vertices, v1, v2)
shade3d(edge, color = "gold")
}
## plot the vertices
for(i in 1L:A){
for(j in 1L:B){
v <- vs[,i,j]
spheres3d(v, radius = sqrt(c(crossprod(v)))/10 , color = "gold2")
}
}
With Asymptote
settings.render = 4;
settings.outformat = "eps";
import tube;
size(200,0);
currentprojection = orthographic(4,4,4);
currentlight = light(gray(0.85), ambient=black, specularfactor=3,
(100,100,100), specular=gray(0.9), viewport=false);
currentlight.background = rgb("363940ff");
// files to be saved -----------------------------------------------------------
string[] files = {
"DP000", "DP001", "DP002", "DP003", "DP004", "DP005",
"DP006", "DP007", "DP008", "DP009", "DP010", "DP011",
"DP012", "DP013", "DP014", "DP015", "DP016", "DP017",
"DP018", "DP019", "DP020", "DP021", "DP022", "DP023",
"DP024", "DP025", "DP026", "DP027", "DP028", "DP029",
"DP030", "DP031", "DP032", "DP033", "DP034", "DP035",
"DP036", "DP037", "DP038", "DP039", "DP040", "DP041",
"DP042", "DP043", "DP044", "DP045", "DP046", "DP047",
"DP048", "DP049", "DP050", "DP051", "DP052", "DP053",
"DP054", "DP055", "DP056", "DP057", "DP058", "DP059",
"DP060", "DP061", "DP062", "DP063", "DP064", "DP065",
"DP066", "DP067", "DP068", "DP069", "DP070", "DP071",
"DP072", "DP073", "DP074", "DP075", "DP076", "DP077",
"DP078", "DP079", "DP080", "DP081", "DP082", "DP083",
"DP084", "DP085", "DP086", "DP087", "DP088", "DP089",
"DP090", "DP091", "DP092", "DP093", "DP094", "DP095",
"DP096", "DP097", "DP098", "DP099", "DP100", "DP101",
"DP102", "DP103", "DP104", "DP105", "DP106", "DP107",
"DP108", "DP109", "DP110", "DP111", "DP112", "DP113",
"DP114", "DP115", "DP116", "DP117", "DP118", "DP119",
"DP120", "DP121", "DP122", "DP123", "DP124", "DP125",
"DP126", "DP127", "DP128", "DP129", "DP130", "DP131",
"DP132", "DP133", "DP134", "DP135", "DP136", "DP137",
"DP138", "DP139", "DP140", "DP141", "DP142", "DP143",
"DP144", "DP145", "DP146", "DP147", "DP148", "DP149",
"DP150", "DP151", "DP152", "DP153", "DP154", "DP155",
"DP156", "DP157", "DP158", "DP159", "DP160", "DP161",
"DP162", "DP163", "DP164", "DP165", "DP166", "DP167",
"DP168", "DP169", "DP170", "DP171", "DP172", "DP173",
"DP174", "DP175", "DP176", "DP177", "DP178", "DP179"};
// lexicographic order ---------------------------------------------------------
bool dominates(int[] e1, int[] e2){
return e2[0]>e1[0] || (e2[0]==e1[0] && e2[1]>e1[1]);
}
// vertices --------------------------------------------------------------------
int A = 8;
int B = 4;
struct quadruple {
real x;
real y;
real z;
real t;
}
real[][] poly1 = new real[A][2];
for(int i = 0; i < A; ++i){
poly1[i][0] = cos(i/A*2pi);
poly1[i][1] = sin(i/A*2pi);
}
real[][] poly2 = new real[B][2];
for(int i = 0; i < B; ++i){
poly2[i][0] = cos(pi/B+i/B*2pi);
poly2[i][1] = sin(pi/B+i/B*2pi);
}
quadruple[][] vertices = new quadruple[A][B];
for(int i = 0; i < A; ++i){
for(int j = 0; j < B; ++j){
quadruple v;
v.x = poly1[i][0]; v.y = poly1[i][1];
v.z = poly2[j][0]; v.t = poly2[j][1];
vertices[i][j] = v;
}
}
// edges -----------------------------------------------------------------------
int[][][] edges;
for(int i = 0; i < A; ++i){
for(int j = 0; j < B; ++j){
int[] e = {i,j};
int[] candidate = {i,(j-1)%B};
if(dominates(e,candidate)){
int[][] edge = {e,candidate};
edges.push(edge);
}
int[] candidate = {i,(j+1)%B};
if(dominates(e,candidate)){
int[][] edge = {e,candidate};
edges.push(edge);
}
int[] candidate = {(i-1)%A,j};
if(dominates(e,candidate)){
int[][] edge = {e,candidate};
edges.push(edge);
}
int[] candidate = {(i+1)%A,j};
if(dominates(e,candidate)){
int[][] edge = {e,candidate};
edges.push(edge);
}
}
}
// rotation in 4D space (right-isoclinic) --------------------------------------
quadruple rotate4d(real alpha, real beta, real xi, quadruple vec){
real a = cos(xi);
real b = sin(alpha)*cos(beta)*sin(xi);
real c = sin(alpha)*sin(beta)*sin(xi);
real d = cos(alpha)*sin(xi);
real p = vec.x;
real q = vec.y;
real r = vec.z;
real s = vec.t;
quadruple out;
out.x = a*p - b*q - c*r - d*s;
out.y = a*q + b*p + c*s - d*r;
out.z = a*r - b*s + c*p + d*q;
out.t = a*s + b*r - c*q + d*p;
return out;
}
// stereographic projection ----------------------------------------------------
triple stereog(quadruple A, real r){
return (A.x, A.y, A.z) / (r - A.t);
}
// stereographic path ----------------------------------------------------------
path3 stereoPath(quadruple A, quadruple B, real r, int n){
path3 out;
for(int i = 0; i <= n; ++i){
real t = i/n;
quadruple M;
real x = (1-t)*A.x + t*B.x;
real y = (1-t)*A.y + t*B.y;
real z = (1-t)*A.z + t*B.z;
real t = (1-t)*A.t + t*B.t;
real lg = sqrt(x*x + y*y + z*z + t*t) / r;
M.x = x / lg; M.y = y / lg; M.z = z / lg; M.t = t / lg;
out = out .. stereog(M, r);
}
return out;
}
// section transformation ------------------------------------------------------
transform T(path3 p3, real t, int n){
triple M = relpoint(p3, t/(n/4));
return scale(length(M)/15);
}
// bounding box ----------------------------------------------------------------
real f=3, h = 4.5, g = 1.5;
path3 boundingbox = (-h,0,-f)--(-h,0,g)--(h,0,f)--(h,0,-g)--cycle;
// draw the duoprism -----------------------------------------------------------
int n = 100;
real r = sqrt(2);
real alpha = pi/2, beta = 0;
for(int file = 0; file < 180; ++file){
real xi = 2*file*pi/180;
picture pic;
// draw bounding box
draw(pic, boundingbox, rgb("363940ff")+opacity(0));
// draw edges
for(int k = 0; k < 2*A*B; ++k){
quadruple A = vertices[edges[k][0][0]][edges[k][0][1]];
quadruple B = vertices[edges[k][1][0]][edges[k][1][1]];
path3 p3 =
stereoPath(rotate4d(alpha, beta, xi, A),
rotate4d(alpha, beta, xi, B), r, n);
transform S(real t){
return T(p3, t, n);
}
draw(pic, tube(p3, unitcircle, S), rgb(139,0,139),
render(compression=Low, merge=true));
}
// draw vertices
for(int i = 0; i < A; ++i){
for(int j = 0; j < B; ++j){
triple Asg =
stereog(rotate4d(alpha, beta, xi, vertices[i][j]), r);
draw(pic, shift(Asg)*scale3(length(Asg)/10)*unitsphere, purple);
}
}
// add and save picture
add(pic);
shipout(files[file], bbox(rgb("363940ff"), FillDraw(rgb("363940ff"))));
erase();
}
/* to do the animation
gs -dSAFER -dBATCH -dNOPAUSE -dEPSCrop -sDEVICE=png16m -r600 -sOutputFile=zpic%03d.png DP*.eps
mogrify -resize 512x zpic*.png
gifski --fps 12 zpic*.png -o DuoprismStereo.gif
*/
With POV-Ray
#version 3.7;
global_settings { assumed_gamma 1 }
#include "colors.inc"
#include "textures.inc"
/* camera */
camera {
location <-11, 7, -32>
look_at 0
angle 45
right x*image_width/image_height
}
// sun -------------------------------------------------------------------------
light_source {< 4000,6000,-6000> color rgb<1,1,1>*0.9} // sun
light_source {<-11, 7,-32> color rgb<0.9,0.9,1>*0.1 shadowless} // flash
// sky -------------------------------------------------------------------------
plane {
<0,1,0>, 1 hollow
texture {
pigment {
bozo turbulence 1.3
color_map {
[0.00 rgb <0.24, 0.32, 1.0>*0.6]
[0.75 rgb <0.24, 0.32, 1.0>*0.6]
[0.83 rgb <1,1,1>]
[0.95 rgb <0.25,0.25,0.25>]
[1.0 rgb <0.5,0.5,0.5>]
}
scale<1,1,1>*2.5 translate< 0,0,3>
}
finish {
ambient 1
diffuse 0
}
}
scale 10000
}
// fog on the ground -----------------------------------------------------------
fog {
fog_type 2
distance 50
color Gray10
fog_offset 0.1
fog_alt 1.5
turbulence 1.8
}
// ground ----------------------------------------------------------------------
plane {
<0,1,0>, 0
texture {
pigment { color rgb <0.95,0.9,0.73>*0.35 }
normal { bumps 2 scale <0.25,0.25,0.25>*0.5 turbulence 0.5 }
finish { phong 0.1 }
}
}
/* ----- vertices ----- */
#declare A = 4;
#declare B = 30;
#declare poly1 = array[A];
#for(i,0,A-1)
#declare poly1[i] = array[2] {cos(i/A*2*pi), sin(i/A*2*pi)};
#end
#declare poly2 = array[B];
#for(i,0,B-1)
#declare poly2[i] = array[2] {cos(i/B*2*pi), sin(i/B*2*pi)};
#end
#declare vertices = array[A][B];
#for(i,0,A-1)
#for(j,0,B-1)
#declare vertices[i][j] =
< poly1[i][0], poly1[i][1], poly2[j][0], poly2[j][1] >;
#end
#end
/* ----- edges ----- */
#macro dominates(e1,e2)
(e2[0]>e1[0]) | ((e2[0]=e1[0]) & (e2[1]>e1[1]))
#end
#declare nedges = 2*A*B;
#declare edges = array[nedges];
#declare k=0;
#for(i,0,A-1)
#for(j,0,B-1)
#local e = array[2] {i,j};
#local candidate = array[2] {i,mod(mod(j-1,B)+B,B)};
#if(dominates(e,candidate))
#local edge = array[2] {e,candidate};
#declare edges[k] = edge;
#declare k = k+1;
#end
#local candidate = array[2] {i,mod(mod(j+1,B)+B,B)};
#if(dominates(e,candidate))
#local edge = array[2] {e,candidate};
#declare edges[k] = edge;
#declare k = k+1;
#end
#local candidate = array[2] {mod(mod(i-1,A)+A,A),j};
#if(dominates(e,candidate))
#local edge = array[2] {e,candidate};
#declare edges[k] = edge;
#declare k = k+1;
#end
#local candidate = array[2] {mod(mod(i+1,A)+A,A),j};
#if(dominates(e,candidate))
#local edge = array[2] {e,candidate};
#declare edges[k] = edge;
#declare k = k+1;
#end
#end
#end
/* rotation in 4D space */
#macro rotate4d(theta,phi,xi,vec)
#local a = cos(xi);
#local b = sin(theta)*cos(phi)*sin(xi);
#local c = sin(theta)*sin(phi)*sin(xi);
#local d = cos(theta)*sin(xi);
#local p = vec.x;
#local q = vec.y;
#local r = vec.z;
#local s = vec.t;
< a*p - b*q - c*r - d*s
, a*q + b*p + c*s - d*r
, a*r - b*s + c*p + d*q
, a*s + b*r - c*q + d*p >
#end
/* stereographic projection */
#macro StereographicProjection(q)
<q.x,q.y,q.z> / (sqrt(2)-q.t)
#end
/* rotated and projected vertices */
#macro ProjectedVertices(theta,phi,xi)
#local out = array[A][B];
#for(i,0,A-1)
#for(j,0,B-1)
#local out[i][j] = StereographicProjection(
rotate4d(theta,phi,xi,vertices[i][j])
);
#end
#end
out
#end
/* macro spherical segment */
#macro vlength4(P)
sqrt(P.x*P.x + P.y*P.y + P.z*P.z + P.t*P.t)
#end
#macro sphericalSegment(P, Q, n)
#local out = array[n+1];
#for(i, 0, n)
#local pt = P + (i/n)*(Q-P);
#local out[i] = sqrt(2)/vlength4(pt) * pt;
#end
out
#end
/* macro to draw an edge */
#macro Edge(verts, v1, v2, theta, phi, xi, Tex)
#local P = verts[v1[0]][v1[1]];
#local Q = verts[v2[0]][v2[1]];
#local PQ = sphericalSegment(P, Q, 100);
sphere_sweep {
b_spline 101
#for(k,0,100)
#local O =
StereographicProjection(rotate4d(theta,phi,xi,PQ[k]));
O vlength(O)/15
#end
texture { Tex }
}
#end
/*-----------------------------------------*/
/*----- draw the duoprism ------*/
/*-----------------------------------------*/
#declare theta = pi/2;
#declare phi = 0;
#declare xi = 2*frame_number*pi/180;
#declare vs = ProjectedVertices(theta, phi, xi);
#declare edgeTexture = texture {
pigment { color Red }
finish {
ambient .1
diffuse .9
reflection 0
specular 1
metallic
}
};
object {
union {
/* draw edges */
#for(i, 0, 2*A*B-1)
Edge(vertices, edges[i][0], edges[i][1],
theta, phi, xi, edgeTexture)
#end
/* draw vertices */
#for(i,0,A-1)
#for(j,0,B-1)
sphere {
vs[i][j], vlength(vs[i][j])/10
texture { edgeTexture }
}
#end
#end
}
translate <-3, 6, -15>
scale 0.8
}
/* ini file
Width = 512
Height = 512
Antialias = On
Antialias_Threshold = 0.3
Input_File_Name = DuoprismStereographic.pov
Initial_Clock = 0
Final_Clock = 1
Initial_Frame = 0
Final_Frame = 179
Subset_Start_Frame = 0
Cyclic_Animation = on
*/
Here is another one. This is a hexagonal duoprism with a cell colored in red.
#version 3.7;
global_settings { assumed_gamma 1 }
#include "colors.inc"
#include "textures.inc"
// camera ----------------------------------------------------------------------
camera {
location <0, 0,-10>
look_at 0
angle 45
right x*image_width/image_height
}
// light sources ---------------------------------------------------------------
light_source { <0,0,-100> White shadowless }
light_source { <100,0,-100> White shadowless }
// moon ------------------------------------------------------------------------
light_source {
1000, 800, 3000>
<-color White
shadowless
looks_like {
sphere {
0,0,0>, 300
<texture {
pigment {
color Yellow
}normal {
bumps 0.5
scale 50
}finish {
emission 0.8
diffuse 0.2
phong 1
}
}
}
}
}
// sky -------------------------------------------------------------------------
plane {
0,1,0>, 1 hollow
<texture {
pigment {
color rgb <0.01, 0.01, 0.2>
}finish {
emission 0.5
diffuse 0.5
}
} scale 10000
}
// the clouds ------------------------------------------------------------------
plane {
0,1,0>,1 hollow
<texture {
pigment {
bozo turbulence 1.3
color_map {
0.00 rgb <0.24, 0.32, 1.0>*0.6]
[0.75 rgb <0.24, 0.32, 1.0>*0.6]
[0.83 rgb <1,1,1> ]
[0.95 rgb <0.25,0.25,0.25> ]
[1.00 rgb <0.5,0.5,0.5> ]
[
}scale 2.5
translate <0,1,0>
}finish {
emission 0.25
diffuse 0
}
} scale 5000
}
// fog on the ground -----------------------------------------------------------
fog {
fog_type 2
distance 50
color Gray50
fog_offset 0.1
fog_alt 1.5
turbulence 1.8
}
// sea -------------------------------------------------------------------------
plane {
0,1,0>, -1 hollow
<texture{
pigment{
rgb <.098,.098,.439>
}finish {
ambient 0.15
diffuse 0.55
brilliance 6.0
phong 0.8
phong_size 120
reflection 0.2
}normal {
bumps 0.95
turbulence .05
scale <1,0.25,1>
}
}
}
// vertices --------------------------------------------------------------------
#declare a = sqrt(3) / 2;
#declare vertices = array[36]
{0.5, a, 0.5>,
<a, 0.5, 0.0, 1.0>,
<a, 0.5, -a, 0.5>,
<a, 0.5, -a, -0.5>,
<a, 0.5, 0.0, -1.0>,
<a, 0.5, a, -0.5>,
<a, 0.0, 1.0, a, 0.5>,
<0.0, 1.0, 0.0, 1.0>,
<0.0, 1.0, -a, 0.5>,
<0.0, 1.0, -a, -0.5>,
<0.0, 1.0, 0.0, -1.0>,
<0.0, 1.0, a, -0.5>,
<0.5, a, 0.5>,
<-a, 0.5, 0.0, 1.0>,
<-a, 0.5, -a, 0.5>,
<-a, 0.5, -a, -0.5>,
<-a, 0.5, 0.0, -1.0>,
<-a, 0.5, a, -0.5>,
<-a, -0.5, a, 0.5>,
<-a, -0.5, 0.0, 1.0>,
<-a, -0.5, -a, 0.5>,
<-a, -0.5, -a, -0.5>,
<-a, -0.5, 0.0, -1.0>,
<-a, -0.5, a, -0.5>,
<-a, 0.0, -1.0, a, 0.5>,
<0.0, -1.0, 0.0, 1.0>,
<0.0, -1.0, -a, 0.5>,
<0.0, -1.0, -a, -0.5>,
<0.0, -1.0, 0.0, -1.0>,
<0.0, -1.0, a, -0.5>,
<-0.5, a, 0.5>,
<a, -0.5, 0.0, 1.0>,
<a, -0.5, -a, 0.5>,
<a, -0.5, -a, -0.5>,
<a, -0.5, 0.0, -1.0>,
<a, -0.5, a, -0.5>
<a,
};#declare facetVertices = array[12] {0,5,6,30,11,35,12,17,18,23,24,29};
#declare otherVertices = array[24]
1,2,3,4,7,8,
{9,10,13,14,15,16,
19,20,21,22,25,26,
27,28,31,32,33,34};
// edges -------------------------------------------------------------------
#declare facetEdges = array[18][2]
{0, 5},
{0, 6},
{0, 30},
{5, 11},
{5, 35},
{6, 11},
{6, 12},
{11, 17},
{12, 17},
{12, 18},
{17, 23},
{18, 23},
{18, 24},
{23, 29},
{24, 29},
{24, 30},
{29, 35},
{30, 35}
{
};#declare otherEdges = array[54][2]
{0, 1},
{1, 2},
{1, 7},
{1, 31},
{2, 3},
{2, 8},
{2, 32},
{3, 4},
{3, 9},
{3, 33},
{4, 5},
{4, 10},
{4, 34},
{6, 7},
{7, 8},
{7, 13},
{8, 9},
{8, 14},
{9, 10},
{9, 15},
{10, 11},
{10, 16},
{12, 13},
{13, 14},
{13, 19},
{14, 15},
{14, 20},
{15, 16},
{15, 21},
{16, 17},
{16, 22},
{18, 19},
{19, 20},
{19, 25},
{20, 21},
{20, 26},
{21, 22},
{21, 27},
{22, 23},
{22, 28},
{24, 25},
{25, 26},
{25, 31},
{26, 27},
{26, 32},
{27, 28},
{27, 33},
{28, 29},
{28, 34},
{30, 31},
{31, 32},
{32, 33},
{33, 34},
{34, 35}
{
};
// macros ----------------------------------------------------------------------
#macro vlength4(P)
sqrt(P.x*P.x + P.y*P.y + P.z*P.z + P.t*P.t)
#end
#macro sphericalSegment(P, Q, n)
#local out = array[n+1];
0, n)
#for(i, #local pt = P + (i/n)*(Q-P);
#local out[i] = sqrt(2)/vlength4(pt) * pt;
#end
out#end
#macro rotate4d(theta,phi,xi,vec)
#local a = cos(xi);
#local b = sin(theta)*cos(phi)*sin(xi);
#local c = sin(theta)*sin(phi)*sin(xi);
#local d = cos(theta)*sin(xi);
#local p = vec.x;
#local q = vec.y;
#local r = vec.z;
#local s = vec.t;
< a*p - b*q - c*r - d*s
, a*q + b*p + c*s - d*r
, a*r - b*s + c*p + d*q
, a*s + b*r - c*q + d*p >#end
#macro StereographicProjection(q)
acos(q.t/sqrt(2))/sqrt(2-q.t*q.t) * <q.x,q.y,q.z>
#end
#macro ProjectedFacetVertices(theta, phi, xi)
#local out = array[12];
0, 11)
#for(i, #local out[i] =
StereographicProjection(
rotate4d(theta, phi, xi, vertices[facetVertices[i]])
);#end
out#end
#macro ProjectedOtherVertices(theta, phi, xi)
#local out = array[24];
0, 23)
#for(i, #local out[i] =
StereographicProjection(
rotate4d(theta, phi, xi, vertices[otherVertices[i]])
);#end
out#end
// texture ---------------------------------------------------------------------
#declare edgeTexture1 =
texture {
New_Pennyfinish {
ambient 0.01
diffuse 2
reflection 0
brilliance 8
specular 0.1
roughness 0.1
}
};
#declare edgeTexture2 =
texture {
pigment { Red }
finish {
ambient 0.01
diffuse 2
reflection 0
brilliance 8
specular 0.1
roughness 0.1
}
};
// draw an edge ----------------------------------------------------------------
#macro Edge(verts, v1, v2, theta, phi, xi, Tex)
#local P = verts[v1];
#local Q = verts[v2];
#local PQ = sphericalSegment(P, Q, 100);
sphere_sweep {
b_spline 101
0,100)
#for(k,#local O = StereographicProjection(rotate4d(theta,phi,xi,PQ[k]));
vlength(O)/20
O #end
texture {
Tex
}
}#end
// draw ------------------------------------------------------------------------
#declare theta = pi/2;
#declare phi = 0;
#declare xi = 2*frame_number*pi/180;
#declare vsFacet = ProjectedFacetVertices(theta, phi, xi);
#declare vsOther = ProjectedOtherVertices(theta, phi, xi);
object {
union {
0, 53)
#for(i, 0], otherEdges[i][1],
Edge(vertices, otherEdges[i][
theta, phi, xi, edgeTexture1)#end
0, 17)
#for(i, 0], facetEdges[i][1],
Edge(vertices, facetEdges[i][
theta, phi, xi, edgeTexture2)#end
0, 23)
#for(i, sphere {
vlength(vsOther[i])/10
vsOther[i], texture { edgeTexture1 }
}#end
0, 11)
#for(i, sphere {
vlength(vsFacet[i])/10
vsFacet[i], texture { edgeTexture2 }
}#end
}scale 0.5
rotate <60, 0, 0>
translate <0, 0.5, -2>
}