Exact integral of a polynomial on a simplex

Posted on December 2, 2022 by Stéphane Laurent
Tags: R, python, julia

The paper Simple formula for integration of polynomials on a simplex by Jean B. Lasserre provides a method to calculate the exact value of the integral of a multivariate polynomial on a simplex (i.e. a tetrahedron in dimension three). I implemented it in Julia, Python, and R.

Integration on simplices is important, because any convex polyhedron can be decomposed into simplices, thanks to the Delaunay tessellation. Therefore one can integrate over convex polyhedra once one can integrate over simplices (I wrote an example of doing so with R).

Julia

using TypedPolynomials
using LinearAlgebra

function integratePolynomialOnSimplex(P, S)
    gens = variables(P)
    n = length(gens)
    v = S[end]    
    B = Array{Float64}(undef, n, 0)
    for i in 1:n
        B = hcat(B, S[i] - v)
    end
    Q = P(gens => v + B * vec(gens))
    s = 0.0
    for t in terms(Q)
        coef = TypedPolynomials.coefficient(t)
        powers = TypedPolynomials.exponents(t)
        j = sum(powers)
        if j == 0
            s = s + coef
            continue
        end
        coef = coef * prod(factorial.(powers))
        s = s + coef / prod((n+1):(n+j))
    end
    return abs(LinearAlgebra.det(B)) / factorial(n) * s
end

Julia example

We define the polynomial to be integrated as follows:

using TypedPolynomials
@polyvar x y z
P = x^4 + y + 2*x*y^2 - 3*z

Be careful. If the expression of your polynomial does not involve one of the variables, e.g. \(P(x, y, z) = x^4 + 2xy^2\), you must define a polynomial involving this variable:

P = x^4 + 2*x*y^2 + 0.0*z

Now we define the simplex as a matrix whose rows correspond to the vertices:

# simplex vertices
v1 = [1.0, 1.0, 1.0] 
v2 = [2.0, 2.0, 3.0] 
v3 = [3.0, 4.0, 5.0] 
v4 = [3.0, 2.0, 1.0]
# simplex
S = [v1, v2, v3, v4]

And finally we run the function:

integratePolynomialOnSimplex(P, S)

Python

from math import factorial
from sympy import Poly
import numpy as np

def _term(Q, monom):
    coef = Q.coeff_monomial(monom)
    powers = list(monom)
    j = sum(powers)
    if j == 0:
        return coef
    coef = coef * np.prod(list(map(factorial, powers)))
    n = len(monom)
    return coef / np.prod(list(range(n+1, n+j+1)))

def integratePolynomialOnSimplex(P, S):
    gens = P.gens
    n = len(gens)
    S = np.asarray(S)
    v = S[n,:]
    columns = []
    for i in range(n):
        columns.append(S[i,:] - v)    
    B = np.column_stack(tuple(columns))
    dico = {}
    for i in range(n):
        newvar = v[i]
        for j in range(n):
            newvar = newvar + B[i,j]*Poly(gens[j], gens, domain="RR")
        dico[gens[i]] = newvar.as_expr()
    Q = P.subs(dico, simultaneous=True).as_expr().as_poly(gens)
    print(Q)
    monoms = Q.monoms()
    s = 0.0
    for monom in monoms:
        s = s + _term(Q, monom)
    return np.abs(np.linalg.det(B)) / factorial(n) * s

Python example

# simplex vertices
v1 = [1.0, 1.0, 1.0] 
v2 = [2.0, 2.0, 3.0] 
v3 = [3.0, 4.0, 5.0] 
v4 = [3.0, 2.0, 1.0]
# simplex
S = [v1, v2, v3, v4]

# polynomial to integrate
from sympy import Poly
from sympy.abc import x, y, z
P = Poly(x**4 + y + 2*x*y**2 - 3*z, x, y, z, domain = "RR")

# integral
integratePolynomialOnSimplex(P, S)

R

library(spray)

integratePolynomialonSimplex <- function(P, S) {
  n <- ncol(S)
  v <- S[n+1L, ]
  B <- t(S[1L:n, ]) - v
  gens <- lapply(1L:n, function(i) lone(i, n))
  newvars <- vector("list", n)
  for(i in 1L:n) {
    newvar <- v[i]
    Bi <- B[i, ]
    for(j in 1L:n) {
      newvar <- newvar + Bi[j] * gens[[j]]
    }
    newvars[[i]] <- newvar
  }
  Q <- 0
  exponents <- P[["index"]]
  coeffs    <- P[["value"]] 
  for(i in 1L:nrow(exponents)) {
    powers <- exponents[i, ]
    term <- 1
    for(j in 1L:n) {
      term <- term * newvars[[j]]^powers[j] 
    }
    Q <- Q + coeffs[i] * term
  }
  s <- 0
  exponents <- Q[["index"]]
  coeffs    <- Q[["value"]] 
  for(i in 1L:nrow(exponents)) {
    coef <- coeffs[i]
    powers <- exponents[i, ]
    d <- sum(powers)
    if(d == 0L) {
      s <- s + coef
      next
    }
    coef <- coef * prod(factorial(powers))
    s <- s + coef / prod((n+1L):(n+d))
  }
  abs(det(B)) / factorial(n) * s
}

R example

library(spray)

# variables
x <- lone(1, 3)
y <- lone(2, 3)
z <- lone(3, 3)
# polynomial
P <- x^4 + y + 2*x*y^2 - 3*z

# simplex (tetrahedron) vertices
v1 <- c(1, 1, 1)
v2 <- c(2, 2, 3)
v3 <- c(3, 4, 5)
v4 <- c(3, 2, 1)
# simplex
S <- rbind(v1, v2, v3, v4)

# integral
integratePolynomialonSimplex(P, S)

Note

The functions do not check whether the given matrix S defines a non-degenerate simplex. This is equivalent to the invertibility of the matrix B constructed in the functions.