Passing a R function to Haskell
Passing R objects to Haskell
In two previous posts I have shown some examples of calling Haskell from R. More precisely, the procedure consists in building a DLL with Haskell and using this DLL in R, with the help of the .C function.
We can obviously pass an integer, a double or a character string in the .C function. Thanks to the inline-r Haskell library, we can do more: namely, it is possible to pass any R object, since this library implements the type SEXP.
Let’s give an example. In this example we pass a R vector of doubles to Haskell, we calculate the square of each component in Haskell and we send the result to R.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ForeignFunctionInterface #-}
module Lib where
import qualified Data.Vector.SEXP as VS
import Foreign
import Foreign.C
import qualified Foreign.R.Type as R
foreign export ccall squaredDoubles1 :: Ptr (SEXP s 'R.Real) -> Ptr (SEXP s 'R.Real) -> IO ()
squaredDoubles1 :: Ptr (SEXP s 'R.Real) -> Ptr (SEXP s 'R.Real) -> IO ()
squaredDoubles1 input result = do
input <- peek input
let inputAsList = (VS.toList . VS.fromSEXP) input
let outputAsList = map (\x -> x*x) inputAsList
let output = (VS.toSEXP . VS.fromList) outputAsList :: SEXP s 'R.Real
poke result outputTo call in R with the .C function, the R objects must be encapsulated in list():
> .C("squaredDoubles1", input = list(c(1,2,3)), result=list(0))$result[[1]]
[1] 1 4 9Instead of using VS.toList . VS.fromSEXP to convert the R vector to a Haskell list, we could use the real function of the Foreign.R module (this is a port of the C function REAL):
...
import qualified Foreign.R as FR
foreign export ccall squaredDoubles2 :: Ptr (SEXP s 'R.Real) -> Ptr (SEXP s 'R.Real) -> IO ()
squaredDoubles2 :: Ptr (SEXP s 'R.Real) -> Ptr (SEXP s 'R.Real) -> IO ()
squaredDoubles2 input result = do
input <- peek input
inputAsListPtr <- FR.real input
l <- FR.length input
inputAsList <- peekArray l inputAsListPtr
let outputAsList = map (\x -> x*x) inputAsList
let output = (VS.toSEXP . VS.fromList) outputAsList :: SEXP s 'R.Real
poke result outputThe performance is a bit better:
> library(microbenchmark)
> x <- rnorm(100000)
> microbenchmark(
+ H1 = .C("squaredDoubles1", input = list(x), result=list(0))$result[[1]],
+ H2 = .C("squaredDoubles2", input = list(x), result=list(0))$result[[1]]
+ )
Unit: milliseconds
expr min lq mean median uq max neval cld
H1 26.96348 34.70504 44.02896 38.77741 42.31139 205.2244 100 b
H2 24.33826 30.25337 34.39467 32.80317 35.54754 160.4622 100 a Alternatively, we can avoid the pointers and use the .Call function instead of the .C function:
foreign export ccall squaredDoubles3 :: SEXP s 'R.Real -> SEXP s 'R.Real
squaredDoubles3 :: SEXP s 'R.Real -> SEXP s 'R.Real
squaredDoubles3 input =
(VS.toSEXP . VS.fromList)
(map (\x -> x*x) ((VS.toList . VS.fromSEXP) input))> .Call("squaredDoubles3", c(1,2,3))
[1] 1 4 9More advanced usage: resorting to the FFI
Now we will show how to evaluate a R function.
The function below is written in C. It takes as arguments a R function f (that is, a SEXP object of class CLOSXP), a double x, and it evaluates f(x).
I’m using the C language and not inline-r for two reasons:
there’s no port of the C functions
allocSExpanddefineVarininline-r;even if these two functions were available in Haskell (we could import them with the FFI), the Haskell code would be similar to the C code.
#include <R.h>
#include <Rinternals.h>
double myeval(SEXP f, double x) {
// convert x to SEXP
SEXP xR;
PROTECT(xR = allocVector(REALSXP, 1));
REAL(xR)[0] = x;
UNPROTECT(1);
// put f in an environment
SEXP envir = allocSExp(ENVSXP);
SEXP f_symbol = install("f");
defineVar(f_symbol, f, envir);
// evaluate f(x) - like eval(call("f", x), envir) in R
SEXP call = Rf_lang2(f_symbol, xR);
return(REAL(eval(call, envir))[0]);
}Now we need to import this function:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ForeignFunctionInterface #-}
module Lib where
import Foreign.C.Types
import Foreign.R (SEXP, SEXP0, unsexp)
import qualified Foreign.R as R
import qualified Foreign.R.Type as R
foreign import ccall unsafe "myeval" c_myeval :: SEXP0 -> CDouble -> CDouble
myeval :: SEXP s 'R.Closure -> Double -> Double
myeval f x = realToFrac (c_myeval (unsexp f) (realToFrac x))Let us try it. The numerous realToFrac’s could seem silly but for a more serious application we prefer the signature SEXP s 'R.Closure -> Double -> Double rather than SEXP s 'R.Closure -> CDouble -> CDouble.
foreign export ccall myevalR :: Ptr (SEXP s 'R.Closure) -> Ptr CDouble -> Ptr CDouble -> IO ()
myevalR :: Ptr (SEXP s 'R.Closure) -> Ptr CDouble -> Ptr CDouble -> IO ()
myevalR f x result = do
f <- peek f
x <- peek x
poke result $ realToFrac $ myeval f (realToFrac x :: Double)> .C("myevalR", f=list(function(x) x+1), x=3, result=0)$result
[1] 4Thus, myeval f is a Haskell function of signature Double -> Double, though the evaluation is not performed by Haskell.
Let us see an example of application. Form R, we will call the function
chebyshevFit :: Int -> (Double -> Double) -> [Double]of the polynomial library.
...
import Math.Polynomial.Chebyshev
foreign export ccall chebyshevFitR :: Ptr (SEXP s 'R.Closure) -> Ptr CInt -> Ptr (SEXP V 'R.Real) -> IO ()
chebyshevFitR :: Ptr (SEXP s 'R.Closure) -> Ptr CInt -> Ptr (SEXP V 'R.Real) -> IO ()
chebyshevFitR f n result = do
n <- peek n
f <- peek f
let fit = chebyshevFit (fromIntegral n :: Int) (myeval f)
poke result $ (VS.toSEXP . VS.fromList) fitWe will apply it to the function \(x \mapsto \cos(4\arccos(x))\), which is the Chebyshev polynomial of order \(4\) for \(|x| \leq 1\). Therefore, for any \(n \geq 5\), the result must theoretically be \(0, 0, 0, 0, 1, 0, \ldots, 0\).
> f <- function(x) cos(4*acos(x))
> .C("chebyshevFitR", f=list(f), n=6L, result=list(0))$result[[1]]
[1] -1.110223e-16 3.145632e-16 -1.480297e-16 4.255855e-16 1.000000e+00 2.775558e-16